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Computational Modeling Objectives

• Fundamental understanding – investigating 
consequences of assumptions

• Design (via analysis) 
– for example

• Chemical processing for optimal production
• Airflow for efficient aircraft design

The greater the accuracy of the model, the better the 
understanding, or the larger the increase in the 
efficiency



Computer models of Physical, Economic, 
Social, and other processes

• Models have to be simplified to keep 
computational time and space manageable.

• Usually simplified to exclude details thought to be 
unimportant – but these may require simulation to 
determine whether they are unimportant!

• Many details are stochastic in nature, although 
models may only describe average behavior.

• Simplification usually means ignoring small-scale 
behavior although it may play a significant role in 
some regions.



Multiple Scale Issues
• Higher accuracy usually requires considering smaller-scale 

phenomena.
• Modeling on small scales in space also requires resolving small 

scales in time for 2 reasons:
– Small spatial scales features frequently have fast time responses
– To maintain numerical stability (due to the CFL condition and/or

parabolic terms) requires small time steps when spce steps are small
• We are usually interested much longer times and larger spatial 

regions than the fine scale models.  For example:
– Turbulence on a plane wing is on a small scale compared to the size of 

the plane.
– Molecular interaction times in chemical/biological models may be at the 

pico-second level or faster, while we are interested in hours or days.



“Closure” of fine-detail models
• Many high-dimensional Differential Equations (DEs) have lower-

dimensional manifolds to which all solutions tend.  Trivial Example: all 
solutions of                        

tend towards the 2-Dimensional manifold 
• Other very-high-dimensional problems have low-dimensional descriptors 

of macroscopic variables.  
Example: Fluid (gas) flow.  Can be described accurately and microscopically as a collection of 

a vast number of interacting particles.  We could describe this by the positions and 
velocities of every particle, by the probability distribution functions for the particle velocities, 
or in terms of the macroscopic variables pressure, density, and velocity.  These are low-
order moments of the probability distribution function of the particles.  If we described the 
particle solution by all of its moments (instead of the probability distributions functions), we 
would find that the higher-order moments close on the lower order ones. , that is to say, 
they become functionals of the lower order ones.  

If the solution lies in this closure (low-dimensional manifold) we would like to compute only in 
that manifold and avoid the fine detail.
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Descriptions:   1: Particle positions and momenta 2:  Approximate distribution of velocities

1. Detailed: vi for each variables

2. Moments

Zeroth moment: density ρ

First moment: momentum  ρv

Second moment

Third Momentm3

m2

m1

m0

…..etc…….

DISTRIBUTIONS & MOMENTS – A low dimensional description
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Multi-scale Computational Modeling
Modeling the process at different scales in different regions. Either:
1. Same mathematical model in every region, or
2. More detailed model in finer-scale regions
We will concern ourselves with case 2.  Case 1 is mostly a problem of 

using adaptive meshes.

Microscopic modeling: using descriptions at the fine scale
Macroscopic modeling: using descriptions at the coarse scale

Usually, macroscopic models are approximations that are sufficiently accurate 
in regions where the solution does not have a fine structure and the 
microscopic phenomena do not dominate.  In this case, we wish to use 
microscopic models only in regions where macroscopic models are 
insufficiently accurate

In some cases, the macroscopic model is inaccurate even though the solution 
does not have a fine structure, because we do not know how to derive 
good approximations to the closure equations.  In this case we must use 
the microscopic model everywhere.



Two types of problems in Multi-Scale Modeling:

1. If we know both the microscopic models and accurate 
macroscopic models, we can use  microscopic models in 
regions where they are needed for accuracy and macroscopic 
models elsewhere.

– One major issue is how to link the different regions together: e.g. 
a particle model region to a continuum region

2. If we do not know the macroscopic closure of the microscopic 
model (or we have an inaccurate macroscopic model) we must 
use the microscopic model wherever we compute, and find 
ways to avoid computing over the whole region.

– The issue is how to use microscopic information to determine 
macroscopic behavior.  We will focus on problem 2 in this talk.



The two levels of description

• Fine level (such as a particle description)
– Very high dimensional
– Able to represent fine detail

• Coarse level (such as finite element model 
of the density, pressure, and velocity)
– Low-dimensional
– Useful for large time and space scales

We have to have a mapping between them



RESTRICTION - a many-one mapping from a high-
dimensional description (such as a collection of 
particles in Monte Carlo simulations) to a low-
dimensional description - such as a finite element 
approximation to a distribution of the particles.

LIFTING - a one-many mapping from low- to high-
dimensional descriptions.

We do the step-by-step simulation in the high-
dimensional description.

We do the macroscopic tasks in the low-dimensional 
description.



Time-domain multi-scale modeling
• Assumption that long-time behavior is 

slowly changing (smooth)
• Integrate microscopic model forward in 

time for short periods
• Use polynomial extrapolation to jump 

forward in time and reduce the total 
amount of microscopic simulation 

We call this Projective Integration



Projective Forward Euler Method - linear fit to last two points
after several “damping” steps - here, 2.

Projective Integration - a simple example
2 steps to “damp” errors
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Projective methods in time:

- perform detailed simulation for short periods - or use existing/legacy codes 
- and then extrapolate forward over large steps

Time-domain multi-scale modeling



Restriction & Lifting with Projective Integration

Macroscopic
description

Microscopic
description

...
Short step
simulation

Lifting

Restriction

Projective step

Solution

Lifting

True solution

Computed solution



Time

Value

Initial Value

Stochastic
solution

Linear least-squares fit
To chord of solution

1st-order extrapolation

Result of one linear
projective step.  
Starting value for
next projective step

Next
linear least 
squares fit

n1δt

mn3δt

If the integrator is “noisy” (stochastic) then fit chord over several steps:



Example integration  of a Stochastic Problem 

Regular Monte Carlo integration

Monte Carlo

Projective Integration



Time

Value

Initial Value

Stochastic Solution 
– forward In time

1st-order extrapolation 
backwards

Result of one linear
projective step
- Backward in time.  
Starting value for
next projective step

Although Monte Carlo particle solution can only proceed forward in time, we can integrate in reverse 
direction by taking the projective step backwards in time



Example: a simplified model of oxidation of 
CO (ΘA) by dissociatively adsorbing oxygen 
(ΘB) on a Pt catalyst in the presence of an 
addition inert species (ΘC).  Simulated by 
kinetic Monte Carlo (forward) and projective 
reverse (compared with direct solution of 
known ODEs – deterministic)

ODEs

The solution is integrated 
backwards from t = 0.0 
to t = -400.0, at which 
time it is near an 
unstable stationary state, 
as shown on the next 
slide:



Phase-plane plot of the second and third components in a reverse 
integration. 

Starting point

Unstable stationary point



The next slide shows the results of a chemotaxis model of moving bacteria.  In this 
model each cell is either moving or stationary.  It switches from stationary to moving 
at random times, and chooses a random direction (here either left or right).   It 
switches back to being stationary at a random time, but this event occurs with lower 
probability if the cell is sensing that it the local concentration of chemoactrant (a 
chemical that it likes, such as food) is higher than it was a little while ago.  (This is 
handled via time delay mechanisms in the cell and simulated by differential 
equations.) 

Because it tends to remain moving for longer periods when it is moving in a direction 
of increasing chemoactrant levels than when they are decreasing, the net movement 
is in the increasing direction, so the cell is “attracted” to high levels of chemoactrant.

One expects that it should be possible to work with a macroscopic description of the 
system in terms of the density of the cells, rather than at the microscopic level of 
individual cells.  (Indeed, this has been done for many situations.)  

We simulate at the microscopic level and use as a macroscopic model a low-order 
approximation to the cumulative distribution function of the assumed probability 
density function of the cells in space.



Chemotaxis: Coarse Projective Integration

Time (s) Time  (s)

Coarse Projection

Normal Evolution

(5 healing, m=10 acquisition and k=10 projection till time=6000 
and then 5 healing, 10 acquisition and k=20 projection till time=20000)

Attractant profile

Direction

Note: this slide contains movies that can only be viewed in power point. 



A Second Example

• Here we are dealing with a population of people 
each in a particular state (in this case, with a 
value between -1 and 1) and changing states on 
a stochastic basis.

• If we have large number of people we can think 
of the probability density function of states, x,  
between -1 and 1.  If this is p(x) it means that the 
expected number of people with states between 
x and x+dx is Np(x)dx if the total number of 
people is N. 



Example: a Financial market model

• A collection of semi-independent agents 
• Each has a “value” between -1 and 1 that indicates their 

desire to sell (a stock) if -1, or to buy it if +1. 0 means 
neutral.

• If they hear nothing, their value drifts to zero.
• Random arrival of good news and bad news causes 

them to jump positively or negatively.
• If they reach +1 they buy and return to zero
• If they reach -1 they sell and return to zero
• The rate of buying (selling) increases the arrival rates of 

the good (bad) news by a factor g.
These rules are illustrated in the next slide which has to be viewed in 

power point



-1 0 1

No news – drift to Center

SELL BUYNeutral BullishBearish

Bad News Arrives
jump left -ε- Good News Arrives

jump right ε+

Bad News
arrival rate
(Poisson)

Good News
arrival rate
(Poisson)

If moves to extreme right
agent buys and becomes

neutral

If moves to extreme left
agent sells and becomes

neutral

Sell rate increases
bad news

arrival rate

Buy rate increases
good news
arrival rate

Influence of other investors

Buy
rate

Sell
rate

- or lemmings falling off a cliff



SIMULATION RESULTS
50000 agents, g=35, ε+=0.075, ε - = - 0.072, v0

+=v0
-=20

Open loop response, g = 42

Note: this and the next two slides contain movies that can only be viewed in power point. 



SIMULATION RESULTS
50000 agents, g=35, ε+=0.075, ε - =-0.072, v0

+ = v0
- =20

Open loop response, g = 46.5



Coarse projective integration: Accelerating things

Simulation results at  
g = 35, 200,000 agents
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Bifurcation diagrams
• When we are  designing systems that are modeled by differential 

equations we are interested in how the steady states change with
the change in parameters.  Typically we find that as a parameter is 
changed, the values at the steady state change.  If they are 
changing to more desirable values (indicating, perhaps, a more 
efficient  operating point), we naturally want to increase the 
parameter further.  Typically there are sudden discontinuities in the 
behavior as a function of a parameter, called bifurcations, where the 
system may lose its steady state.  A bifurcation diagram shows the 
behavior of the stationary states as a function of a parameter, and 
we often wish to calculate these.

• This financial problem has a stable and unstable stationary states 
for small values of the parameter g but as g increases, the stable 
and unstable states approach each other, and then the system 
becomes unstable.   



Finding stationary states
• We wish to find stationary states of the macroscopic 

variables.
• If we had a differential equation y’ = f(y) for the 

macroscopic variables we could find stationary states by 
solving f(y) = 0.

• When we only have a microscopic model, we must find 
the stationary state of the macroscopic restrictions of the 
microscopic model by simulation.

• The mechanism for this is shown in the next slide, and 
the process is illustrated for the financial model on the 
following two slides which contain movies that have to be 
run in power point.
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The Bifurcation Diagram
50000 agents, g=35, ε+=0.075, ε-=-0.072, v0

+=v0
-=20

Open loop response. From unstable to stable markets



The Bifurcation Diagram
50000 agents, g=35, ε+=0.075, ε - = -0.072, v0

+ = v0
- = 20

Open loop response. Blow up



Space-domain multi-scale modeling
• Assumption spatial behavior in the 

macroscopic variables is smooth
• Integrate over small spatial regions, and 

assume that smooth functions can be 
used to interpolate between them

• Use these smooth functions to determine 
boundary conditions of small spatial 
regions
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We call this the gap-tooth scheme



Space-domain multi-scale modeling
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The Gap-Tooth method: detailed modeling in small spatial 
boxes with interpolation between boxes.  Major problem is 
how to provide boundary conditions for small boxes.



A novel scheme for gap boundaries
- when the microscopic simulation is particle based

Simulation within tooth determines particles that leave tooth.
We only need to provide particles that enter tooth boundaries

Tooth



Tooth

Right flux is set
of particles that

leave right boundary

Left flux is set
of particles that

leave left boundary

Suppose ratio of tooth width to spacing is α.
Let outgoing flux to right from box i be Or,i and incoming right 
flux be Ir,I If it is reasonable to assume that flux is smooth
then,                 Ir,i =   α Or,i-1 + (1 - α) Or,i
is a first-order interpolation formula

Or,i

D
(1-α)D

Or,i-1 Ir,i



Difficult to “interpolate” discrete events (particles leaving 
teeth).    Instead, handled by sending α of the outgoing 
particles to next box and recycling (1 - α) of the particles 
to the same box.  Called flux redistribution.

Probability αProbability 1 - α



Multiscale Modeling Challenges:
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Can we combine gap tooth with projective integration in time?



Multiscale Modeling Challenges:
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The “action” is going on at the intersection of the strips

Multiscale Modeling Challenges:
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The “action” is going on at the intersection of the strips
- these are “microscopic” elements and, by interpolation and 
extrapolation, they are patched together over the full region



Example: Simulation of Viscous Burgers Equation

• Burgers equation is

• Can be simulated by particles as follows:
– After each time step of length δt every particle is moved by a Gaussian 

noise of mean 0 and variance proportional to δt.  This handles the 
second order x derivative.

– Each particle is also moved to the right a distance proportional to the 
local density of particles.  This handles the first order x derivative.

• The next two slides have movies showing (1) a particle simulation of 
the equation with periodic boundary conditions using 1,000,000 
particles over the full region, and (2) a particle simulation using teeth 
occupying only 2% of the space (98% of the region is gaps) with 
20,000 particles to do 1/50 of the total work.  It also uses projective 
integration jumping over 2/3 of the time domain.

2

2

u u uu
t x x

∂ ∂ ∂
= − +
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Burgers Equation by particle Monte Carlo  full space and time



Burgers Equation by particle Monte Carlo with gap-tooth scheme and projective integration



Concluding remarks
• We have discussed one form of Multiscale computing.
• It can be used to determine macroscopic behavior of 

systems for which we only know microscopic models.
• By its nature, the approach is well adapted to parallel 

computing because each tooth can be simulated on a 
different processor.

• It must be emphasised that, like much of multiscale 
computing,  this is relatively new work so that there are 
still many issues to be worked out.





• The remaining slides are not part of the 
talk, but are here in case of certain types 
of questions.



Higher order-interpolation of internal boundaries is needed for 
higher-order problems:

Burgers equation requires second-order interpolation.

Or,1Or,0 Ir,1 Ir,2 Or,2

Ir,i =   α(1 + α) Or,i-1 + (1 - α2) Or,i - α(1 - α) Or,i+1
2                                           2

How to handle a negative number of particles? 
(Any higher-order interpolation formula must have some negative coefficients.)



Or,1Ir,1 Ir,2Ir,0 α2

1- α(1 + α) /2

Anti particle

Duplicate particle

Particle “splits” into itself, a 
duplicate, and an “anti particle”

Total “Flow” needed:
-α(1 - α) /2 1-α2 α(1 +   α) /2 

α(1 - α) /2



Projective Forward Euler Method - linear fit to last two points



Projective Integration
We suppose we have a one-step integrator Φ(y) that computes 
y(t+h) from y(t) for a the differential equation y′ = f(y)
Starting from y0 = y(t0) we apply this k times to form y1, y2, … , yk.   
Now we apply it one more time and use yk and yk+1 to estimate the 
derivative.  
We then use this derivative to integrate (extrapolate) forward a 
distance Mh.         It can be written as:   
yk+1+M = (M+1)yk+1 – Myk

This is the Projective Forward Euler method



Stability analysis – simple case: 
Projective Forward Euler  (PFE)

Assume that one step of the supplied integrator Φ(y) (the inner 
integrator) has an amplification of ρ(hλ) 
- for Forward Euler ρ(hλ) = 1+hλ
- for an “exact” integrator ρ(hλ) = exp(hλ)
Amplification of PFE from t0 to tk+1+M is

σ = ρk[(M+1)ρ – M] = ρk[1 + (M+1)(ρ-1)]
which is ρk[1 + (M+1) hλ] if inner is Forward Euler

Region of absolute stability: Set of ρ such that |σ| ≤ 1.
(Note: we express stability in terms of ρ making σ independent of 
the form of the inner integrator - which we may not know.)
Compute stability region by finding all ρ such that |σ| < 1

The region of absolute stability of takes one of two forms:

Usual linear analysis: for  y′ = λy



ρ-plane plot k = 2,    M = 5, 7, and 9
As M increases, change from one region to two. This happens when M/k ≈ 3.6

Note: ρ = 1+hλ if inner integrator is Forward Euler this is usual stability plot.

M = 5

M = 7

M = 9



If M is large:
ρ-plane [= (1+hλ)-plane]

1
0

Such a small stability region - what’s the point?



Consider large M:  Outer Integrator step  ≈ Mhλ:
Mhλ - plane is one of interest for stability

0-2≈ -M

Asymptotically the stability region of the
Forward Euler method

Asymptotically a disk of radius
M(1 - 1/k)



Telescoping Projective Methods
(handling multiple clusters of eigenvalues)

We have created an “outer integrator” over a step size of h(k+q+M) using 
an inner integrator Φ over step size h.

Why not use recursion? (really iteration)  Let the inner integrator be Φ0
First level outer integrator is Φ1 e.g., for Projective Euler

Φ1 = Φ0
k((M+1) Φ0 - M)

Projective integrator based on Φi is Φi+1

Φi+1 = Φi
k((M+1) Φi - M)  for PFE (if k and M are fixed)

It uses step size h(k+q+M)i+1 - growing exponentially, or, more generally,

hi+1 = (ki + qi + Mi)hi



Projective Forward Euler Method - linear fit to last two points

One outer integrator step  - Φ1



Two-level Projection method (k = 2 at both levels)

y0  y3+M                  y6+2M              y9+3M                                          

Φ2



Let us consider the stability of Telescopic methods.

No need to use same method at each level, or same k and M at 
each level, but to illustrate concepts we will start by considering 
the use of (projective) forward Euler at all levels.

In practice, we will use first-order methods at all levels except for 
the outermost level since at the inner levels the step size/method 
is determined by stability only.  At the outer level the step 
size/method must be chosen for accuracy.



Telescoping Projective Methods:

What is stability? Consider Projective Forward Euler.  

Let amplification of level i integrator be σi We have

σi+1 =  σi
k[(M + 1)σi - M]

Stability region is set of  σ that remain in unit disk (or, remain 
bounded) in iteration

σ ← σk[(M + 1)σ - M]

This stability region will contain the stability region of the method with any 
finite number of iterations.



10 iterations of PFE with k=2, M=3.  Outer stepsize is 60,466,176h0
As # iterations → ∞ boundary becomes fractal

Note that M is small so that [0,1] (or [-1,0]) is inside the stability region
In this case, the stability boundary touches the real axis 10 times.  

Use of a slightly smaller M would place [-β,1) in the interior of the stability region.



We can show that for any M there is a k0 such that for all k ≥ k0
the stability region includes the negative axis from 0 to 1 in the 
ρ-plane in the case of the Forward Euler method.

In some ways, these are like high-stage number Runge Kutta
Methods which have been used to extend the region of 
stability. (The previous slide’s 10-level projective integrator is 
a 59049-stage RK method!)

A more interesting application may be to problems with 
multiple clusters of eigenvalues as shown on the next slide:



Suppose all eigenvalues lie in a union of (disjoint) disks:



… by choosing an inner step size of 1/λ0 and then using an 
effective step size at the outer levels of projective integration 
of 1/λi for the i-th level we can choose values for ki (the 
number of steps at the (i -1)-st level before projecting at the 
i-th level to achieve stability over these disks.  

The step size at the i-th level is defined as 
hi = hi-1(ki-1 + Mi-1 + 1)

A particular case with  h = 1, 11, and 121 is shown in the 
next slide:



A two-level PFE2-9 method

3 stability regions determined by the 3 stepsizes: 
Inner

1st level
2nd level

These regions are due to k (2) and 
cannot be placed where needed.



In effect, each successive stepsize damps eigenvalues 
of the order of the inverse of that stepsize.

Thus, if we know where the “stiff” eigenvalues are, we 
can select a sequence of stepsizes to damp them.

In a sense, this method is a little like using a Chebshev
type iteration to remove eigencomponents in 
decreasing order of size, except that it is spread out 
over many steps.  (If the problem is highly non-linear in 
a way that cause the eigendirections to change rapidly, 
more iterations (that is, inner steps) are needed, and 
the method becomes less efficient.



NOTE

A telescopic method is NOT the same as using a collection of 
different step sizes.  The telescopic method can be designed 
so that the number of steps at any given level before a 
projective step is determined solely by the ratio of the step 
sizes at the two adjacent levels, independent of the number of 
levels of telescoping.

If, on the other hand, just a collection of step sizes are 
used, more smaller steps are needed as the size of the 
largest step increases.



What about complex eigenvalues?

Use some sort of two-stage method (RK-like) which will have ρ(hλ) = 0 
when hλ has complex conjugate values (if used as the inner integrator) 
or σ(ρ) = 0 when ρ has complex conjugate values for intermediate 
stage integrators..

For example, 
' ' '

1 (1 ) ( )n n n n ny y hy hy y hyβ β α+ = + − + +

2( ) 1 ( )h h hρ λ λ αβ λ= + +
This has

which has roots at

1/(2 ) 4 1/(2 )h iλ αβ αβ αβ= − ± −

and are complex for r = αβ > 1/4. (Second order if r  = 1/2.)



Similar technique can be used for intermediate 
level projective step.  

Alternatively (and more simply) one can use k+2 
inner steps and then do a projective step using the 
last three points in:

yk+2+M =rM2yk+2+(M-2rM2)yk+1 -(M-1-rM2)yk

to achieve a stability polynomial of the form 
σ = ρk[1 + M(ρ-1) + rM2 (ρ-1)2]

This places stability regions around the complex 
conjugate eigenpair given on the last slide.

With this technique we can place regions of stability 
around any desired sets of locations in the complex 
plain, as shown in the next slide.



Stability plot of 4-level projective method in the ρ = 1+h0λ plane.  The sizes of 
steps at each level are h0, 4h0, 20h0, 80h0, and 880h0.  The outermost is Projective 
Forward Euler (k=1, M=9), so the right-most region - a dot in the figure at (0,1) is 
near the stability region for the forward Euler with step size 880h0. The first and 
third levels used the method on the last slide with r=0.3 and r=0.35 respectively 
(with k=1, M=3) to place stability regions around 0.44±0.25i, and 0.976±0.015i 
respectively.  The second level was PFE with k=1, M=3 placing a region near 0.95. 
Larger values of k would make the regions (except for the rightmost) larger.


